Parallel Coordinate Descent Methods for Full Configuration Interaction

Yuejia Zhang Weiguo Gao Yingzhou Li

Fudan University

Nov 2024

Problem Statement

• Search for the ground-state of a chemical system given by the many-body time-independent Schrödinger Equation

$$\hat{H}|\mathbf{\Phi_0}
angle= \textit{E}_0|\mathbf{\Phi_0}
angle,$$

where
$$|\mathbf{\Phi}_{\mathbf{0}}\rangle = \mathbf{\Phi}_{\mathbf{0}}(r_1, \ldots, r_{n_{\text{elec}}}), r_i \in \mathbb{R}^3$$
.

• Under Born–Oppenheimer approximation, the Hamiltonian operator with n_{nuc} nuclei and n_{elec} electrons is

$$\hat{H} = -\frac{1}{2} \sum_{i=1}^{n_{\text{elec}}} \nabla_i^2 + \sum_{i=1}^{n_{\text{elec}}} V_{\text{ext}}(r_i; \{R_I\}_{I=1}^{n_{\text{nuc}}}) + \sum_{i< j}^{n_{\text{elec}}} \frac{1}{\|r_i - r_j\|}.$$

FCI Numerical Discretization

- Based on one-electron spin-orbitals $\{\chi_p\}_{p=1}^{n_{orb}}$ from Hartree-Fock procedure.
- Wavefunction approximated as linear combination of anti-symmetrized tensor products (Slater determinants), called *configurations*:

$$|\mathbf{\Phi}_{\mathbf{0}}\rangle = \sum_{i=1}^{N_{\text{FCI}}} c_i |D_i\rangle = \sum_{i=1}^{N_{\text{FCI}}} c_i |\chi_{p_1}\chi_{p_2}\cdots\chi_{p_n}\rangle,$$

with $n = n_{\text{elec}}$ and $1 \le p_1 < p_2 < \cdots < p_n \le n_{\text{orb}}$.

- FCI variational space dimension: $N_{\text{FCI}} = \binom{n_{\text{orb}}}{n_{\text{elec}}}$.
- Schrödinger equation transformed to FCI eigenvalue problem

$$H\mathbf{c} = E_0\mathbf{c}, \quad H \in \mathbb{R}^{N_{\mathsf{FCI}} \times N_{\mathsf{FCI}}}, \quad \mathbf{c} \in \mathbb{R}^{N_{\mathsf{FCI}}}.$$

ヨト・イヨト

Hamiltonian Matrix

Entry: $H_{ij} = \langle D_i | \hat{H} | D_j \rangle$, not guaranteed to be non-negative.

- Symmetric. $H_{ij} = H_{ji}$.
- Sparse. For off-diagonals $|D_i\rangle \neq |D_j\rangle$,

• If
$$|D_i\rangle = a_r^{\dagger}a_p |D_j\rangle$$
, $H_{ij} = \langle r|\hat{h}|p\rangle + \sum_k \langle rk||pk\rangle$.

• If
$$|D_i\rangle = a_r^{\dagger}a_s^{\dagger}a_pa_q |D_j\rangle$$
, $H_{ij} = \langle rs||pq\rangle$.

• Otherwise, $H_{ij} = 0$.

Consequence: *H* has $O(n_{elec}^2 n_{orb}^2)$ entries per row.

- Ground-state eigenvalue $E_0 < 0$.
- Ground-state eigenvector **c** sparse in the sense of truncation.

Memory usage

Table: Different Molecule Systems and Storage cost	
--	--

Molecule	Basis	Electrons	Spin–Orbitals	Dimension	Memory
H_2O	cc-pVDZ	10	48	$\sim 10^8$	$\sim 1 \; {\sf GB}$
N_2	cc-pVDZ	14	56	$\sim 10^{11}$	$\sim 1~{\sf TB}$
N_2	cc-pVTZ	14	120	$\sim 10^{16}$	$\sim 100~{ m PB}$
Cr_2	Ahlrichs	48	84	$\sim 10^{22}$	-

Solution: Wavefunction Compression

- By tensor train: DMRG
- By sampling: FCIQMC, iFCIQMC, S-FCIQMC
- By selecting "important" configurations: HCI, SHCI, ASCI, CDFCI

→ < ∃→

FCI eigenvalue problem

Consider the unconstrained minimization problem

$$\min_{\mathbf{c}\in\mathbb{R}^{N_{\mathsf{FCI}}}} f(\mathbf{c}) = \min_{\mathbf{c}} \|H + \mathbf{c}\mathbf{c}^{\mathsf{T}}\|_{F}^{2}.$$

• Gradient
$$\nabla f(c) = 4H\mathbf{c} + 4(\mathbf{c}^{\mathsf{T}}\mathbf{c})\mathbf{c}$$
.

• Hessian
$$\nabla^2 f(c) = 4H + 8\mathbf{c}\mathbf{c}^{\mathsf{T}} + 4(\mathbf{c}^{\mathsf{T}}\mathbf{c})I$$
.

- Non-convex problem, with unbounded Lipschitz constant.
- Stationary points: $0, \pm \sqrt{-\lambda_1} \mathbf{v}_1, \dots, \pm \sqrt{-\lambda_m} \mathbf{v}_m$ ($\dots < \lambda_m < 0 < \lambda_{m+1} < \dots$).
- Only two local minimizers ±√-λ₁ν₁ (which are also global minimizers), the others are all strict saddle points.
- Ensures convergence to the ground state $\pm c$, given a good starting point (e.g., Hartree–Fock ground state).

Coordinate Descent FCI (CDFCI)¹

Coordinate gradient descent method

- Minimizes computational costs by *avoiding operations with the entire Hamiltonian matrix*.
- In each iteration, only one coordinate of the optimizing vector is updated.
- Computation for updating involves only one column of the Hamiltonian matrix.

Figure: Update for one coordinate.

 ¹Z. Wang, Y. Li, J. Lu, J. Chem. Theory Comput., 2019.
 Image: Comput., 2019.

 Y. Zhang, W. Gao, Y. Li (Fudan University)
 Parallel Coordinate Descent Methods for FCI
 Nov 2024

CDFCI Framework

Initialize $\mathbf{c}^{(0)}$, $\mathbf{b}^{(0)} = H\mathbf{c}^{(0)}$. For iteration $\ell = 1, 2, ...$

- Select coordinate $i^{(\ell)} = \arg \max_{i} |\nabla_{i} f(\mathbf{c}^{(\ell-1)})|.$
- Find stepsize by exact line search $\alpha^{(\ell)} = \arg \min_{\alpha} f(\mathbf{c}^{(\ell-1)} + \alpha \mathbf{e}_{i^{(\ell)}}).$
- **3** Update $\mathbf{c}^{(\ell)} = \mathbf{c}^{(\ell-1)} + \alpha^{(\ell)} \mathbf{e}_{i^{(\ell)}},$ $\mathbf{b}^{(\ell)} = \mathbf{b}^{(\ell-1)} + \alpha^{(\ell)} \mathcal{H}_{:,i^{(\ell)}}.$

Remark: Gradient $\nabla f(\mathbf{c}) = 4H\mathbf{c} + 4\mathbf{c}^{\mathsf{T}}\mathbf{c}\mathbf{c} = 4\mathbf{b} + 4\mathbf{c}^{\mathsf{T}}\mathbf{c}\mathbf{c}.$

Figure: Update for one coordinate.

Nov 2024

CDFCI Framework - for Two Coordinates?

Initialize $\mathbf{c}^{(0)}$, $\mathbf{b}^{(0)} = H\mathbf{c}^{(0)}$. For iteration $\ell = 1, 2, ...$

- Select coordinate $i^{(\ell)} = \arg \max_{i} |\nabla_{i} f(\mathbf{c}^{(\ell-1)})|,$ $j^{(\ell)} = \arg \max_{i \neq i^{(\ell)}} |\nabla_{j} f(\mathbf{c}^{(\ell-1)})|.$
- **2** Find stepsize $\alpha^{(\ell)} = \arg \min_{\alpha} f(\mathbf{c}^{(\ell-1)} + \alpha \mathbf{e}_{i^{(\ell)}}),$ $\beta^{(\ell)} = \arg \min_{\beta} f(\mathbf{c}^{(\ell-1)} + \beta \mathbf{e}_{j^{(\ell)}}).$
- $\begin{array}{l} \textbf{O} \quad \text{Update} \\ \mathbf{c}^{(\ell)} = \mathbf{c}^{(\ell-1)} + \alpha^{(\ell)} \mathbf{e}_{i^{(\ell)}} + \beta^{(\ell)} \mathbf{e}_{j^{(\ell)}}, \\ \mathbf{b}^{(\ell)} = \mathbf{b}^{(\ell-1)} + \alpha^{(\ell)} H_{:,i^{(\ell)}} + \beta^{(\ell)} H_{:,j^{(\ell)}}. \end{array}$

Figure: Update for two coordinates.

Nov 2024

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

CDFCI Framework - Exact Line Search?

Initialize $\mathbf{c}^{(0)}$, $\mathbf{b}^{(0)} = H\mathbf{c}^{(0)}$. For iteration $\ell = 1, 2, ...$

- Select coordinate $\begin{aligned} i^{(\ell)} &= \arg \max_{i} |\nabla_{i} f(\mathbf{c}^{(\ell-1)})|, \\ j^{(\ell)} &= \arg \max_{j \neq i^{(\ell)}} |\nabla_{j} f(\mathbf{c}^{(\ell-1)})|. \end{aligned}$
- Find stepsize $\alpha^{(\ell)}, \beta^{(\ell)} = \arg \min_{\alpha,\beta} f(\mathbf{c}^{(\ell-1)} + \alpha \mathbf{e}_{i^{(\ell)}} + \beta \mathbf{e}_{j^{(\ell)}}).$
- $\begin{array}{l} \textcircled{\textbf{0}} \quad \textbf{Update} \\ \mathbf{c}^{(\ell)} = \mathbf{c}^{(\ell-1)} + \alpha^{(\ell)} \mathbf{e}_{i^{(\ell)}} + \beta^{(\ell)} \mathbf{e}_{j^{(\ell)}}, \\ \mathbf{b}^{(\ell)} = \mathbf{b}^{(\ell-1)} + \alpha^{(\ell)} H_{:,i^{(\ell)}} + \beta^{(\ell)} H_{:,j^{(\ell)}}. \end{array}$

Figure: Update for two coordinates.

Add a Scalar γ for Exact Line Search

Modify the minimization problem from $\min_{\alpha,\beta} f(\mathbf{c} + \alpha \mathbf{e}_i + \beta \mathbf{e}_j)$ to

$$\begin{split} \min_{\boldsymbol{\gamma},\boldsymbol{\alpha},\boldsymbol{\beta}} f(\boldsymbol{\gamma}\mathbf{c} + \boldsymbol{\alpha}\mathbf{e}_i + \boldsymbol{\beta}\mathbf{e}_j) &= f(\begin{bmatrix} \mathbf{c} & \mathbf{e}_i & \mathbf{e}_j \end{bmatrix} \begin{bmatrix} \boldsymbol{\gamma} \\ \boldsymbol{\alpha} \\ \boldsymbol{\beta} \end{bmatrix}) \\ &= \left\| H + \begin{bmatrix} \mathbf{c} & \mathbf{e}_i & \mathbf{e}_j \end{bmatrix} \begin{bmatrix} \boldsymbol{\gamma} \\ \boldsymbol{\alpha} \\ \boldsymbol{\beta} \end{bmatrix} \begin{bmatrix} \boldsymbol{\gamma} & \boldsymbol{\alpha} & \boldsymbol{\beta} \end{bmatrix} \begin{bmatrix} \mathbf{c}^{\mathsf{T}} \\ \mathbf{e}_i^{\mathsf{T}} \\ \mathbf{e}_j^{\mathsf{T}} \end{bmatrix} \right\|_{F}^{2}. \end{split}$$

Y. Zhang, W. Gao, Y. Li (Fudan University)

Parallel Coordinate Descent Methods for FCI

Nov 2024

・ロト ・ 国 ト ・ 国 ト ・ 国 ト

3

Matrix Orthogonalization

Construct $\begin{bmatrix} \tilde{\mathbf{c}} & \mathbf{e}_i & \mathbf{e}_j \end{bmatrix}$, where $\|\tilde{\mathbf{c}}\|_2 = 1$, $(\tilde{\mathbf{c}}, \mathbf{e}_i) = 0$, $(\tilde{\mathbf{c}}, \mathbf{e}_j) = 0$.

Add γ and $\mathbf{\tilde{c}}$ for Exact Line Search

Modify the minimization problem from $\min_{\alpha,\beta} f(\mathbf{c} + \alpha \mathbf{e}_i + \beta \mathbf{e}_j)$ to

$$\begin{split} \min_{\gamma,\alpha,\beta} f(\gamma \mathbf{\tilde{c}} + \alpha \mathbf{e}_i + \beta \mathbf{e}_j) &= f(\begin{bmatrix} \mathbf{\tilde{c}} & \mathbf{e}_i & \mathbf{e}_j \end{bmatrix} \begin{bmatrix} \gamma \\ \alpha \\ \beta \end{bmatrix}) \\ &= \left\| H + \begin{bmatrix} \mathbf{\tilde{c}} & \mathbf{e}_i & \mathbf{e}_j \end{bmatrix} \begin{bmatrix} \gamma \\ \alpha \\ \beta \end{bmatrix} \begin{bmatrix} \gamma & \alpha & \beta \end{bmatrix} \begin{bmatrix} \mathbf{\tilde{c}}^{\mathsf{T}} \\ \mathbf{e}_i^{\mathsf{T}} \\ \mathbf{e}_j^{\mathsf{T}} \end{bmatrix} \right\|_F^2 \\ &= \left\| \underbrace{\begin{bmatrix} \mathbf{\tilde{c}}^{\mathsf{T}} \\ \mathbf{e}_i^{\mathsf{T}} \\ \mathbf{e}_j^{\mathsf{T}} \end{bmatrix} H \begin{bmatrix} \mathbf{\tilde{c}} & \mathbf{e}_i & \mathbf{e}_j \end{bmatrix} + \begin{bmatrix} \gamma \\ \alpha \\ \beta \end{bmatrix} \begin{bmatrix} \gamma & \alpha & \beta \end{bmatrix} \right\|_F^2 + \text{constant.} \\ &\in \mathbb{R}^{3 \times 3} \end{split}$$

Extension to Multi Coordinate Descent FCI

- Select a set of coordinates $I = \{i_1, \ldots, i_k\}, 1 \le i_j \le N_{\text{FCI}}$ based on gradient $\nabla f(\mathbf{c}) = 4H\mathbf{c} + 4\mathbf{c}^{\mathsf{T}}\mathbf{c}\mathbf{c}$.
- Denote $\mathcal{E}_I = [e_{i_1}, \dots, e_{i_k}] \in \mathbb{R}^{N_{\mathsf{FCI}} imes k}$.
- The update is given by

$$\mathbf{c} \leftarrow \gamma \mathbf{c} + \mathcal{E}_I \mathbf{a}.$$

 $\bullet\,$ The values of γ and ${\bf a}$ are given by the eigenvector of

$$\begin{bmatrix} \mathbf{\tilde{c}}^{\mathsf{T}} \\ \mathcal{E}_{I}^{\mathsf{T}} \end{bmatrix} H \begin{bmatrix} \mathbf{\tilde{c}} & \mathcal{E}_{I} \end{bmatrix} \in \mathbb{R}^{(k+1) \times (k+1)}$$

corresponding to the minimal eigenvalue λ_{\min} , which is the current energy estimate.

Method

Implementation Details

- H_{ij} evaluated on-the-fly.
- **c** and $\mathbf{b} = H\mathbf{c}$ are stored in a hash table.
- $\mathbf{c}^{\mathsf{T}}\mathbf{c}$, $\mathbf{c}^{\mathsf{T}}\mathbf{b}$ and γ are stored in quadruple precision.
- Update of b_i is discarded if c_i = 0 and Δb_i < τ, where Δb = H_{i,j}a_j. Note that this does not affect eigenvalue estimator

$$\mathsf{RQ}(\mathbf{c}) = rac{\mathbf{c}^\mathsf{T} H \mathbf{c}}{\mathbf{c}^\mathsf{T} \mathbf{c}} = rac{\mathbf{c}^\mathsf{T} \mathbf{b}}{\mathbf{c}^\mathsf{T} \mathbf{c}}.$$

- Compression tolerance au balances between memory-cost and accuracy.
- Shared memory parallelism based on OpenMP: the updates of **c** and **b** = H**c** for each coordinate are performed in parallel.

Overall Speedup: $H_2O/cc-pVDZ$

Figure: Speedup of mCDFCI compared with CDFCI(2019), both in 64 threads and k = 64.

Overall Speedup: $C_2/cc-pVDZ$

Figure: Speedup of mCDFCI compared with CDFCI(2019), both in 128 threads and k = 128.

Overall Speedup: $N_2/cc-pVDZ$

Figure: Speedup of mCDFCI compared with CDFCI(2019), both in 128 threads and k = 128.

Scalability

Table: Speedup of mCDFCI for different number of coordinates (threads) of H₂O in cc-pVDZ basis

	Wall Time (s)			Speedup on <i>k</i> Cores				
Energy	Error	on Single Core	2	4	8	16	32	64
-76.2318601	10^{-2}	9.0	1.9 imes	3.7 imes	5.0 imes	7.0 imes	10.4 imes	13.1 imes
-76.2408601	10^{-3}	292.9	2.0 imes	3.7 imes	4.8 imes	$8.2 \times$	14.3 imes	20.3 imes
-76.2417601	10^{-4}	1837.6	2.0 imes	3.5 imes	6.1 imes	8.3 imes	16.2 imes	$22.5 \times$
-76.2418501	10^{-5}	9016.7	2.1 imes	4.1 imes	8.0 imes	12.3 imes	21.1 imes	29.0 imes
-76.2418591	10^{-6}	32931.7	2.1 imes	4.5 imes	9.3 imes	16.2 imes	29.1 imes	40.7 imes

э

Scalability for each procedure

Figure: Time spent listed in each procedure, while running 6.4M core \times iterations for Cr_2 in Ahlrics SV Basis (48*e*, 84*o*), $\tau = 10^{-4}$.

Summary

The proposed methods **CDFCI** and **mCDFCI**

- performs configuration selection using coordinate descent and exact line search.
- visits important determinants efficiently.
- captures the significant part of FCI space for ground state approximation.

Figure: Update for two coordinates.

Thanks for Your Attention!

contact: yuejiazhang21@m.fudan.edu.cn
preprint: https://arxiv.org/abs/2411.07565